I have the following question:
I'm making a neural network with nnet in R.
library(RODBC)
library(nnet)
library(neuralnet)
library(devtools)
library(reshape2)
library(readxl)
library(dplyr)
library(reshape)
library(readxl)
source('C:nnet_plot_update.r')
datos <- read_xlsx("Dataset.xlsx", sheet=1)
input <- select(datos, -EMR)
output <- select(datos, EMR)
net <- neuralnet(EMR ~ TC241.1 + TC221.1 + TI221.6 + TI222.3 + PC221.3 + PC225.4 + LC221.2 + LI222.2 + CALC.16 + CALC.22, datos, hidden =c(6), threshold=0.01)
plot(net)
test <- read_xlsx("Dataset.xlsx", sheet=4)
test1 <- read_xlsx("Dataset.xlsx", sheet=3)
prediccion <- neuralnet::compute(net,test)
results <- data.frame(actual = test1$EMR , prediccion = prediccion$net.result)
results <- format(round(results, 2))
print(results)
test2 <- data.frame(200.78,263.9,221.27,221,197.06,4.97,24.94,16.62,74.92,8000.0)
prediccionnn <- neuralnet::compute(net,test2)
results <- data.frame(prediccion = prediccionnn$net.result)
results <- format(round(results, 2))
print(results)
This would be the complete code