Apply visual effect on matploitlib

0

How can I change the style or visual aspect of a graphic made in specific matplotlib this:

import wave
import struct
import sys
import numpy as np
from math import sqrt
import matplotlib
matplotlib.use('Agg')
from matplotlib import pylab
import matplotlib.pyplot as plt

filename = sys.argv[1]

if __name__ == '__main__':
    # Open the wave file and get info
    wave_file = wave.open(filename, 'r')
    data_size = wave_file.getnframes()
    sample_rate = wave_file.getframerate()
    print "Sample rate: %s" % sample_rate
    sample_width = wave_file.getsampwidth()
    duration = data_size / float(sample_rate)

# Read in sample data
sound_data = wave_file.readframes(data_size)

# Close the file, as we don't need it any more
wave_file.close()

# Unpack the binary data into an array
unpack_fmt = '%dh' % (data_size)
sound_data = struct.unpack(unpack_fmt, sound_data)

# Process many samples
fouriers_per_second = 24 # Frames per second
fourier_spread = 1.0/fouriers_per_second
fourier_width = fourier_spread
fourier_width_index = fourier_width * float(sample_rate)

if len(sys.argv) < 3:
    length_to_process = int(duration)-1
else:
    length_to_process = float(sys.argv[2])

print "Fourier width: %s" % str(fourier_width)

total_transforms = int(round(length_to_process * fouriers_per_second))
fourier_spacing = round(fourier_spread * float(sample_rate))

print "Duration: %s" % duration
print "For Fourier width of "+str(fourier_width)+" need "+str(fourier_width_index)+" samples each FFT"
print "Doing "+str(fouriers_per_second)+" Fouriers per second"
print "Total " + str(total_transforms * fourier_spread)
print "Spacing: "+str(fourier_spacing)
print "Total transforms "+str(total_transforms)

lastpoint=int(round(length_to_process*float(sample_rate)+fourier_width_index))-1

sample_size = fourier_width_index
freq = sample_rate / sample_size * np.arange(sample_size)

x_axis = range(0, 12)

def getBandWidth():
    return (2.0/sample_size) * (sample_rate / 2.0)

def freqToIndex(f):
    # If f (frequency is lower than the bandwidth of spectrum[0]
    if f < getBandWidth()/2:
        return 0
    if f > (sample_rate / 2) - (getBandWidth() / 2):
        return sample_size -1
    fraction = float(f) / float(sample_rate)
    index = round(sample_size * fraction)
    return index

fft_averages = []

def average_fft_bands(fft_array):
    num_bands = 12 # The number of frequency bands (12 = 1 octave)
    del fft_averages[:]
    for band in range(0, num_bands):
        avg = 0.0

        if band == 0:
            lowFreq = int(0)
        else:
            lowFreq = int(int(sample_rate / 2) / float(2 ** (num_bands - band)))
        hiFreq = int((sample_rate / 2) / float(2 ** ((num_bands-1) - band)))
        lowBound = int(freqToIndex(lowFreq))
        hiBound = int(freqToIndex(hiFreq))
        for j in range(lowBound, hiBound):
            avg += fft_array[j]

        avg /= (hiBound - lowBound + 1)
        fft_averages.append(avg)

for offset in range(0, total_transforms):
    start = int(offset * sample_size)
    end = int((offset * sample_size) + sample_size -1)

    print "Processing sample %i of %i (%d seconds)" % (offset + 1, total_transforms, end/float(sample_rate))
    sample_range = sound_data[start:end]
    ## FFT the data
    fft_data = abs(np.fft.fft(sample_range))
    # Normalise the data a second time, to make numbers sensible
    fft_data *= ((2**.5)/sample_size)
    plt.ylim(0, 1000)
    average_fft_bands(fft_data)
    y_axis = fft_averages
    """Stuff for bar graph"""
    width = 0.35
    p1 = plt.bar(x_axis, y_axis, width, color='r')
    """End bar graph stuff"""
    filename = str('frame_%05d' % offset) + '.png'
    plt.savefig(filename, dpi=100)
    plt.close()
print "DONE!"

I need the final animation to be like the one in the following image:

    
asked by Angel Judath Alvarez 31.03.2018 в 22:12
source

0 answers