I'm using a function that uses all the values of a column hosted in a file .csv
The result of the function is another column with numeric values that is hosted in a previously created .csv
file.
To select the column I use iloc[]
and in the brackets I add the identifier number of the column that I want to analyze with my function.
To save the result I define a variable that includes the generated dataframe (1 numeric column), I open the file .csv
concateno and save:
b = Resultado_de_funcion
a = pd.read_csv('Documento.csv')
c = pd.concat ([a,b],axis=1, ignore_index=True)
c.to_csv('/Users/Desktop/Documento.csv', sep=',', index=False)
Up to here it's great, because I generate my dataFrame that looks like this:
0 1 2 3
1 0.065674523303752 0.081470105150761 0.091769260076159 0.003526573075701
2 0.105065037258997 0.109204903445907 0.183093275351669 0.003306929861304
3 0.111578685238066 0.12082758028963 0.249087842460461 0.00289069546989
4 0.134153874890082 0.16609003496279 0.331391181462819 0.003440747831614
5 0.146779597122661 0.220918839369483 0.395566346515882 0.003117749159231
So far everything is going very well, just that I need to analyze hundreds and hundreds of columns, so I defined a list that contains the number of columns to analyze and I apply the function doing an iteration:
List=[0,1,3,4,5,612,123,233,222,889]
for j in List:
dfT = df2.loc[j]
This makes my function apply just as I want to each column, I can see the results in the python shell, but when I see the results in my file .csv
the only thing I get is the first one and the Last column.
0 889
1 0.065674523303752 0.081470105150761
2 0.105065037258997 0.109204903445907
3 0.111578685238066 0.12082758028963
4 0.134153874890082 0.16609003496279
I think I'm already very close to finishing, but I can not find how to solve this problem, can someone give me new ideas?
Thanks